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1 Introduction

1 Introduction

We discuss several 2D integrable systems with the spectral parameter on an elliptic curve:
Landau-Lifshitz (LL) and Krichever-Novikov (KN) equations, elliptic Toda lattice (ETL) and
elliptic Ruijsenaars-Toda lattice (ERTL). These models can be unified on the basis of a single
discrete equation (subscripts denote the shifts in the square lattice):

(Qq) abc(uujuguie + 1) + a(uug + uguiz) — b(uug + ujui2) — c(uuie + ujug) =0
2 _ 4 2 2 _ 14 2 _aB—Ab
A=a"—da*+1, B°=b"—db*+1, cfm.
r (Q4) on quad-graphs  — discrete ETL on graphs
l / \
7?2 nonlinear superposition square lattice triangular lattice
Z x R Backlund transformation ETL ERTL
l \ /
R? KN LL
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Remark. Eq. (Q4) was introduced in [2] and studied further in [3, 4, 1]. However, in these
papers it was presented in much more cumbersome form related to the Weierstrass form of the

elliptic curve (A2 = 4a® — goa — g3). The given form of equation (Q4) was found by Hietarinta
[SIDE-2004 talk].

[2] V.E. Adler. Backlund transformation for the Krichever-Novikov equation. Int. Math. Res.
Notices 1998:1 1-4.

[3] V.E. Adler, A.l. Bobenko, Yu.B. Suris. Classification of integrable equations on quad-graphs.
The consistency approach. Comm. Math. Phys. 233 (2003) 513-543.

[4] F. Nijhoff. Lax pair for the Adler (lattice Krichever-Novikov) system. Phys. Lett. A 297
(2002) 49-58.
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2 Nonlinear superposition for the Krichever-Novikov equation
The Krichever-Novikov equation [5]

3k —r(@) e,

(1) Ut = Uggxr — 2u,

is the most generic nonlinear integrable equation of the form w; = uyyy + f(Ugs, Uy, u). Accord-

ingly to [6], all other equations of this type are related via differential substitutions to eq (1) when

some zeroes of the polynomial r are multiple, while the case of simple zeroes is isolated.
Backlund auto-transformation for (1) is of the form [2]

(2) Ugply = h(u,0)
where h is the biquadratic polynomial in w, %, such that

r(u) = h — 2hhgg, 7(@) = h2 — 2hhy,.

u

[5] .M. Krichever, S.P. Novikov. Holomorphic bundles over algebraic curves and nonlinear equa-

tions. Uspekhi Mat. Nauk 35:6 (1980) 47-68.
[6] S.I. Svinolupov, V.V. Sokolov, R.l. Yamilov. Bicklund transformations for integrable evolu-

tion equations. Dokl. Akad. Nauk SSSR 271:4 (1983) 802-805.
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The polynomial h corresponding to r(u) = u* — du?® 4 1 depends on an additional parameter
(a, A) on the elliptic curve A% = r(a):

1
h(u,@;a,A) = 2—(a2u2ﬂ2 — 2Aut — u?® — 4% + d?).
a
BTs corresponding to the different values of & commute, and eq. (Q4) defines the nonlinear
superposition principle for these BT. This means the following. The equations

3) Uty ¢ = h(u,u1;a, A) U zU12,2 = h(U2, u12; @, A)

Ugt e = h(u,u2; 0, B) w12, = h(ui,ui2;b, B)
imply the reducible constraint
h(u,u1;a, A)h(ug, uie; a, A) — h(u, ug; b, B)h(u1,u12;b, B) = QQ =0

where @ is the L.h.s. of the eq. (Q4) and Q= Q|p——p- The statement is that the constraint

d
@ = 0 is consistent with the dynamics on x defined by (3): d—Q 00 = 0.
T =
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The important property of (Q4) eq. is 3D-consistency, or consistency around a cube. This
property means that if we assign 6 copies of (Q4) to the faces of a cube, with the common values
of the parameters on the edges, then for arbitrary choice of initial data u, w1, uo,us the values
u193 calculated in three posssible ways coincide.

The classification of 3D-consistent equation, under some additional assumptions, was obtained

in [9].

u9 [0 U192

U a U

nonlinear superposition 3D-consistency

[7] F.W. Nijhoff, A.J. Walker. The discrete and continuous Painlevé hierarchy and the Garnier
system. Glasgow Math. J. 43A (2001) 109-123.

[8] A.l. Bobenko, Yu.B. Suris. Integrable systems on quad-graphs. Int. Math. Res. Notices 11
(2002) 573-611.

[9] V.E. Adler, A.l. Bobenko, Yu.B. Suris. Classification of integrable equations on quad-graphs.
The consistency approach. Comm. Math. Phys. 233 (2003) 513-543.
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3 Three-leg form of (Q,)

Statement 1. Equation (Q4) is equivalent, under the changes
a=06tsna, A=sn'a, b=6"'snf, B=s0'f3, c=6'sn(a—p), u=40dlsng
(where snz = sn(x,d~?)), to the equation

(4) F(q,q1,2)/F(q,q2,0) = F(q, q12, — J5)

where
sn(q + o) —sn(q) O4(q+ @)

Flado) = Q=) “s@ ©alg—a)

This property implies several important consequences: Sy symmetry group of the equation,
3D-consistency, relation to discrete Toda type lattices.
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4 S, symmetry group of (Q,)
Obviously, eq (Q4) admits the symmetry group D, of the square:
Q(’U,, Uy, uz,u12, &, /8) = Q(ulv U, u12, U2, @, /8) = _Q(ua U2, U1, U12, /87 Oé).

Due to this symmetry the three-leg form can be centered in an arbitrary vertex. On the other hand,
three-leg form exhibits one more symmetry which is hidden in the rational form: the diagonals of
the quadrilateral are on the equal footing with its edges.

Indeed, due to the property F'(q,q,a) = 1/F(q,q,—«), eq (4) can be rewritten in the form

F(q7q17a)F(Qa q2, *ﬂ)F(q, Q12,ﬂ — Oé) =1.
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5 Three-leg form implies 3D-consistency

Theorem 2. Eq (Q4) is 3D-consistent.

Proof. Consider the system of equations, associated to the faces of the cube:

(Er2) Q(u, ui,ug,ui2, a1, 2) =0 (Er2) Q(u3, u13, u2s, Uiz, a1, a2) =0
(Er3) Q(u, u1,uz,uiz, 1, 3) =0 (Er3) Q(ug2,u13, ugs, uieg, o1, o3) =0
(Ea3) Q(u, ug, ug, uzs, g, 3) =0 (Ea3) Q(u1,u12, u13, U123, 02, 03) =0

One have to prove that if the values w2, u13, uog are defined from eqs on the left, for arbitrary
initial data u, u1, uo, us, then the rest eqs define one and the same value wuq23.

It is enough to show that if w123 is defined by eq (EQ;),), then (Elg) is fulfilled as well. Rewrite
eqs, containing uq, in three-leg forms:

F(q1,q13,23)/F(q1,q,00) = F(q1,q3, 03 — a1),
F(Qb q12, 042)/F(Q1, q, 061) = F(Ql, q2,02 — 061)7
F(q1,q12, 22)/F(q1, 13, @3) = F(q1, qi23, a2 — a3).

From here the equation

F(q1,92,00 — o) /F(qu,q3, 03 — a1) = F(q1, qi23, a2 — a3)
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follows, relating the fields at the vertices of the dashed tetrahedron. This is nothing but the
three-leg form of the equation

Q(u1,u2,us, u123, 2 — a1, g — ag) = 0,
centered at ¢;. This can be centered at g2, as well, resulting in the cyclic shift of indices:
F(q2,q3,a3 — a2)/F(q2, 1,1 — a2) = F(q2, q123, 3 — 7).

The latter equation, together with the three-leg forms of equations (F12), (FEa3) centered at go,
leads to the three-leg form of (E3), as required. O
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6 3D-consistency — zero curvature representation

An affine-linear equation Q = 0 may be interpreted as Mobius transformation between any
pair of variables, with coefficients depending on the rest pair. Let

Aus + B

=M =
ui3 (Ul, u, oy, Oég) [Ug] CU3 +D

then
ugg = M (ug,u, ag, az)us], w2z = M(ui2,uz, a1, as)ugs] = M(uig, ui, ag, az)us).

Since the composition of Mobius transformations corresponds to the product of the matrices,
hence denoting a3 = A and introducing the normalization factor yields the zero curvature repre-
sentation

L(U12, Ui, xg, )\)L(ul, u, o, )\) = L(ulg, ug, 1, )\)L(’LLQ, u, xg, )\)

with the matrix
— — A B
L(’LLl,u,()él,)\)—(AD— BC) 1/2 <C D)

For the (Q4) equation one obtains (a = d 'sna, I =d tsn ), m =d !sn(a—\))

almuu; +a  —lup — mu
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7 Discrete Toda lattices

Discrete Toda lattices can be defined as equations on “stars” for arbitrary planar graph G:

Yo filuiu) =0
§.)eEG

There exists the correspondence between the planar graphs G and the bipartite quad-graphs Q:
Vo = Vo U Vg, Eqg={(,i")| i€ Vg, i* € Vo=, i € f(i")}

where f(i*) is the face of G, corresponding to the vertex i* of dual graph. In other words, the
edges of GG are diagonals of the faces of ) joining the vertices of one of two types.
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Now, associate eq (Q4) to each face of a quad-graph. In all faces, incident to some blue
vertex, consider the three-leg form of equation centered in this vertex. Then the product of these
equations is free from the variables associated to the green vertices:

n
(5) [1F(@ a1 0500 —aj) =1
j=1

In the original variables u this equation is rational.

Us,1
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The eliminated variables u; play the role of v-functions: their telescopic cancellation means
that the composition of the Mobius transformations

ug = M(u,u12, a1, 00)ur], ug = M(u,ug3, az, as)usl,

Up = M(U, un,Ln, Op—1, an)[unfl]a Uy = M(“? un,b Qlpy,y al)[un]

is the identity transformation. In the matrix language,

¥\
H L(u,wj 1,05 + X, oj41 + A) = const [
1<j<n

where \ appears due to the shift invariance of (5).
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Remark. The 3D-consistent equations were classified in [3], under some additional assumptions.
The legs for the other equations of the list can be obtained as limiting cases:

F(q,q,c) u=u(q) | a=a(a)
(Q1)s=0 exp(a/(q —q)) q o
(Q1)s=1 w q a

qg—q—«

(¢+q+a)(g—q+a) 5
(@) G+7-a)a—q-a) ‘ o
(g 7
(Q3)s=0 zizhgg — g:_k Z; exp2q | exp2a
sinh(q + ¢ + «) sinh(q¢ — ¢+ «)

(Q3)s=1 Snh(g £ 7 — o) sinh(g — 7— o) cosh2q | exp2a

The leg for the version of (Q4) corresponding to the ellipic curve in Weierstrass form:

~ . olg+tgt+a)olg—q+a)
) S Ea v )
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8 Elliptic Toda lattice
Cosider the discrete Toda system on the skew square lattice:
F(q,q,¢)F(q,q-1,—€)F (g, ¢.€)F(q, q1,—¢) = 1
([10], in the rational variables ). It can be written in the Hamiltonian form

p=—f(q,q,¢)+ f(q,q-1,¢), D= f(q,q¢) — f(q q,e)

where f =log F'. Here and in the next section we will use the leg in the form (6).

g-1 q
4 a1

[10] V.E. Adler. Discretizations of the Landau-Lifshitz equation. Teor. Math. Phys. 124:1 (2000)
897-908.
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Consider the continuous limit ¢ = g + £q,.. Taking into account the relations

. ~ qe +1 L1, -
lim f(q,q,¢) =log =——, lim =(f(q,q,¢) + f(q,q,€)) = 2¢(2q),
e—0 g —1 e-0¢
one finds
Gz +1
p = log ;
Gz — 1

pr=—Clg+aq)+ (e —q) — (g +g-1) — ¢(g — g-1) +2((29).

From here the Newtonian equations follow:

q;—’””j = (@ +a) — Clan = ) +Cla+ 1) + (g — g-1) — 2(2).
This is the elliptic Toda lattice as given in [L1]. The rational form of this equation [12, 13] reads
Ugy — 1 (w)/2 1 1
= + )
u2 —r(u) u—up u—u_q

[11] I.M. Krichever. Elliptic analog of the Toda lattice. Int. Math. Res. Notices 8 (2000) 383-412.

[12] A.B. Shabat, R.l. Yamilov. Symmetries of nonlinear chains, Len. Math. J. 2:2 (1991) 377.

[13] R.l. Yamilov. Classification of Toda type scalar lattices, Proc. NEEDS'93, World Scientific
Publ., Singapore, 1993, 423-431.
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9 Elliptic Ruijsenaars-Toda lattice

Analogously, the Hamiltonian form of the discrete Toda system on the triangular lattice is

p= _f(Q)ELg) + f(anLOZ) + f(q7Q—1a04—1) - f(q7 5—1704—1 - 8)5
5: f(67Q7€) +f(§7Q1704 _6)'

Under the continuous limit one obtains

ge +1

+ flg,q1, @),
gz — 1

p = log

Pz = Qqu(q’(h’a) + q—l,qu_1(Qa qd-1, a—l) - fa(q; Q1,04) - fOé_1(Q7 q-1, O{_l) + 2€(2q)

qd-1 q
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From here the Newtonian equations of the elliptic Ruijsenaars-Toda lattice follow:

qiL‘.’L‘

21 Nafa (€01, 0) = q-12fq1 (0, 9-1,0-1) + fa(g: @1, @) + fa_, (¢, ¢-1, a-1) — 2¢(29)
€T

where

2fp (@, q1,0) =Clg+a+o)—Clg—qa+a)—Clg+q —a) +{(¢g—q — o),
2falg,qi,0) =Clg+ a1 +a)+Clg—a+a)+ g+ a1 —a)+ (g —q — a).

The rational form of this lattice [14] reads

20y, — 1 () ULz U_1g 0
= — : : —log (h h 1,00
@il Awura) " Muuan) +ou 8 (e ac)

where h(u,v, ) is the symmetric biquadratic polynomial in u, v such that 7(u) = h2 — 2hh,,.
In the Hamiltonian form it appeared earlier in [12]

2 2
h h —hy, h=h(u,v,a)

[14] V.E. Adler, A.B. Shabat. On a class of Toda chains. Theor. Math. Phys. 111:3 (1997)
647-657.
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and is closely related also to the elliptic Volterra lattice [15]

h(ui,u, o
Uy = (1’7’) — hyy (U1, u, @).
Ul — uU-

and Sklyanin lattice [16, 10].

[15] R.I. Yamilov. On classification of discrete evolution equations. Usp. Mat. Nauk 38:6 (1983)
155-156.

[16] E.K. Sklyanin. On some algebraic structures related to Yang-Baxter equation. Funkts. analiz
16:4 (1982) 27-34.
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